4.5 Article

On the gradient-enhanced damage model for a hyperelastic material

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/15376494.2023.2292286

关键词

nonlocal damage; gradient damage approach; finite strain

向作者/读者索取更多资源

An approach for modeling damage in materials under geometrically nonlinear settings is studied, with a focus on a gradient-enhanced damage method. The proposed method considers the damage variable as an independent variable and computes the fluxes related to the damage gradient. The global Kuhn-Tucker conditions are derived based on the concept of maximum dissipation. The regularization capabilities, accuracy, and efficiency of the proposed damage models are demonstrated through benchmark examples.
An approach for modeling damage in the material in a geometrically nonlinear setting is studied. We consider a gradient-enhanced damage approach where the damage variable is taken as an independent variable, and the fluxes conjugated to the damage gradient are computed. The concept of maximum dissipation is used to derive the global Kuhn-Tucker conditions. The total free energy function consists of two nonlocal terms corresponding to referential gradient of the nonlocal damage variable and a penalty term to bridge the local damage variable and the nonlocal damage variable. Based on the principle of minimum total potential energy, a coupled system of Euler-Lagrange equations is obtained and solved in weak form. These nonlinear system of equations is solved by a standard Newton-Raphson-type solution scheme. The regularization capabilities, as well as the accuracy and efficiency of the proposed damage models are demonstrated by some standard benchmark examples.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据