4.8 Article

Autonomous nanomanufacturing of lead-free metal halide perovskite nanocrystals using a self-driving fluidic lab

期刊

NANOSCALE
卷 16, 期 2, 页码 580-591

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3nr05034c

关键词

-

向作者/读者索取更多资源

In this study, an autonomous approach for the development of lead-free metal halide perovskite nanocrystals is presented, which integrates a modular microfluidic platform with machine learning-assisted synthesis modeling. This approach enables rapid and optimized synthesis of copper-based lead-free nanocrystals.
Lead-based metal halide perovskite (MHP) nanocrystals (NCs) have emerged as a promising class of semiconducting nanomaterials for a wide range of optoelectronic and photoelectronic applications. However, the intrinsic lead toxicity of MHP NCs has significantly hampered their large-scale device applications. Copper-base MHP NCs with composition-tunable optical properties have emerged as a prominent lead-free MHP NC candidate. However, comprehensive synthesis space exploration, development, and synthesis science studies of copper-based MHP NCs have been limited by the manual nature of flask-based synthesis and characterization methods. In this study, we present an autonomous approach for the development of lead-free MHP NCs via seamless integration of a modular microfluidic platform with machine learning-assisted NC synthesis modeling and experiment selection to establish a self-driving fluidic lab for accelerated NC synthesis science studies. For the first time, a successful and reproducible in-flow synthesis of Cs3Cu2I5 NCs is presented. Autonomous experimentation is then employed for rapid in-flow synthesis science studies of Cs3Cu2I5 NCs. The autonomously generated experimental NC synthesis dataset is then utilized for fast-tracked synthetic route optimization of high-performing Cs3Cu2I5 NCs. We present a self-driving fluidic lab for accelerated synthesis science studies of lead-free metal halide perovskite nanocrystals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据