4.6 Article

The extracellular polysaccharide determine the physico-chemical surface properties of Microcystis

期刊

FRONTIERS IN MICROBIOLOGY
卷 14, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fmicb.2023.1285229

关键词

Microcystis; cell surface; extracellular polysaccharide; monosaccharide composition; hydrophobicity

向作者/读者索取更多资源

This study investigated the physico-chemical surface properties of Microcystis and its relationship with extracellular polysaccharides (EPS). The results showed that the hydrophilicity, zeta potential, and charge of Microcystis did not vary with the cultivation stage. Microcystis wesenbergii had high surface free energy, EPS content, and growth rate during the logarithmic phase, while M. aeruginosa exhibited these characteristics during the stationary phase. EPS polysaccharide composition primarily influenced the specific surface area (SSA) and total surface energy, while EPS protein composition influenced hydrophobicity and surface tension. This study elucidates the significance of EPS in impacting the surface properties of Microcystis cells.
Microcystis possesses the capacity to form colonies and blooms in lakes and reservoirs worldwide, causing significant ecological challenges in aquatic ecosystems. However, little is known about the determining factors of physico-chemical surface properties that govern the competitive advantage of Microcystis. Here, The physico-chemical surface properties of Microcystis wesenbergii and Microcystis aeruginosa, including specific surface area (SSA), hydrophobicity, zeta potential, and functional groups were investigated. Additionally, the extracellular polysaccharide (EPS) were analyzed. Laboratory-cultured Microcystis exhibited hydrophilic, a negative zeta potential and negatively charged. Furthermore, no significant relationship was shown between these properties and the cultivation stage. Microcystis wesenbergii exhibited low free energy of cohesion, high surface free energy, high growth rate, and high EPS content during the logarithmic phase. On the other hand, M. aeruginosa displayed lower free energy of cohesion, high surface free energy, high EPS content, and high growth rate during the stationary phase. These characteristics contribute to their respective competitive advantage. Furthermore, the relationship between EPS and surface properties was investigated. The polysaccharide component of EPS primarily influenced the SSA and total surface energy of Microcystis. Likewise, the protein component of EPS influenced hydrophobicity and surface tension. The polysaccharide composition, including glucuronic acid, xylose, and fructose, mainly influenced surface properties. Additionally, hydrophilic groups such as O-H and P-O-P played a crucial role in determining hydrophobicity in Microcystis. This study elucidates that EPS influenced the SSA, hydrophobicity, and surface free energy of Microcystis cells, which in turn impact the formation of Microcystis blooms and the collection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据