4.8 Article

Plasmonic digital PCR for discriminative detection of SARS-CoV-2 variants

期刊

BIOSENSORS & BIOELECTRONICS
卷 246, 期 -, 页码 -

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2023.115859

关键词

Plasmonic; Digital PCR; Molecular diagnosis; SARS-CoV-2; Variants viruses

向作者/读者索取更多资源

We have developed a novel strategy for discriminative detection of SARS-CoV-2 variants using the plasmonic photothermal effect of gold nanofilms and digital polymerase chain reaction (dPCR) technology. With this method, we were able to detect the delta and omicron variants with high sensitivity within 25 minutes from COVID-19 patients' clinical samples, making it a rapid and accurate point-of-care testing tool.
We developed a novel strategy for discriminative detection of SARS-CoV-2 variants based on the plasmonic photothermal effect of gold nanofilms and digital polymerase chain reaction (dPCR) technology. This method consists of the gold nanofilm-based dPCR chip fabrication for ultrafast heating and cooling cycles by the plasmonic photothermal effect, the LED quencher immobilization through the interfacing compound on the surface of the gold nanofilm to prevent photoquenching of PCR signaling dye, and the discriminative detection of the variant viruses from the COVID-19 clinical samples by photothermal cycles with fabricated dPCR chips and a portable plasmonic PCR device. Compared to conventional sequencing or RT-qPCR-based variant detection methods, this technology can be effectively applied to point-of-care testing by enabling ultrafast quantitative analysis with a small device. With this method, we successfully detected the delta variant and the omicron variant with a high sensitivity of 10 copies from COVID-19 patients' clinical samples within 25 min, including reverse transcription. This method can be applied universally to rapid and accurate point-of-care testing for various pandemic viruses as well as the coronavirus.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据