4.7 Article

Scattering of elastic waves by a sphere with orthorhombic anisotropy and application to polycrystalline material characterization

期刊

ULTRASONICS
卷 138, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.ultras.2023.107199

关键词

Elastic wave scattering; Orthorhombic anisotropy; Spherical inclusion; Polycrystal; Effective wave number

向作者/读者索取更多资源

This study investigates the scattering of elastic waves by an anisotropic sphere with orthorhombic symmetry inside an isotropic medium, and applies it to the characterization of polycrystalline materials with anisotropic grains. The expansion coefficients of the wave and displacement field are determined inside the sphere using recursion relations and boundary conditions. The T matrix elements are then obtained and used to analyze the attenuation and phase velocity of polycrystalline materials, particularly at low frequencies. The proposed approach shows good agreement with previous results and finite element method for strongly anisotropic materials.
Scattering of elastic waves by an anisotropic sphere with orthorhombic symmetry inside an isotropic medium is studied and applied to characterization of polycrystalline materials with anisotropic grains. For a single sphere the waves in the isotropic surrounding are expanded in the spherical vector wave functions. Inside the sphere, the elastodynamic equations are first transformed to spherical coordinates and the displacement field is expanded in terms of the vector spherical harmonics in the angular directions and power series in the radial direction. The governing equations inside the sphere give recursion relations among the expansion coefficients in the power series. The boundary conditions on the sphere then determine the relation among the scattered wave expansion coefficients and those of the incident wave, expressed as the transition (T) matrix. For low frequencies the elements of the T matrix are obtained in explicit form. According to the theory of Foldy the T matrix elements of a single sphere are used to study attenuation and phase velocity of polycrystalline materials, explicitly for low frequencies. Comparisons of the present method with previously published results and recent FEM results show a good correspondence for low frequencies. The present approach shows a better agreement with FEM for strongly anisotropic materials in comparison with other published methods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据