4.7 Article

Regularity and variability of functional brain connectivity characteristics between gyri and sulci under naturalistic stimulus

期刊

COMPUTERS IN BIOLOGY AND MEDICINE
卷 168, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compbiomed.2023.107747

关键词

Functional connectivity; Naturalistic stimulus; 7T functional magnetic resonance imaging; Spatio-temporal graph convolutional networks; Gyri and sulci

向作者/读者索取更多资源

This study systematically investigates the functional connectivity characteristics between gyri and sulci in the human brain under naturalistic stimulus, and identifies unique features in these connections. This research provides novel insights into the functional brain mechanism under naturalistic stimulus and lays a solid foundation for accurately mapping the brain anatomy-function relationship.
The human cerebral cortex is folded into two fundamentally anatomical units: gyri and sulci. Previous studies have demonstrated the genetical, structural, and functional differences between gyri and sulci, providing a unique perspective for revealing the relationship among brain function, cognition, and behavior. While previous studies mainly focus on the functional differences between gyri and sulci under resting or task-evoked state, such characteristics under naturalistic stimulus (NS) which reflects real-world dynamic environments are largely unknown. To address this question, this study systematically investigates spatio-temporal functional connectivity (FC) characteristics between gyri and sulci under NS using a spatio-temporal graph convolutional network model. Based on the public Human Connectome Project dataset of 174 subjects with four different runs of both movie-watching NS and resting state 7T functional MRI data, we successfully identify unique FC features under NS, which are mainly involved in visual, auditory, emotional and cognitive control, and achieve high discriminative accuracy 93.06 % to resting state. Moreover, gyral regions as well as gyro-gyral connections consistently participate more as functional information exchange hubs than sulcal ones among these networks. This study provides novel insights into the functional brain mechanism under NS and lays a solid foundation for accurately mapping the brain anatomy-function relationship.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据