4.6 Article

Identification of nonvolatile organic compounds (NVOCs) in biopharmaceuticals through non-target analysis and quantification using complexation-precipitation extraction

期刊

JOURNAL OF CHROMATOGRAPHY A
卷 1713, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.chroma.2023.464540

关键词

Antibody drug; NVOC; Self-builtE&L database; Predicted fragments; Polysorbate removal

向作者/读者索取更多资源

In this study, a comprehensive screening and structure elucidation of 23 nonvolatile organic compounds (NVOCs) in two antibody drugs was conducted. Seven previously unreported compounds were identified. A quantitative method with high sensitivity, accuracy, and precision was developed for evaluating the safety of NVOCs in drug products.
Single-use systems in biopharmaceutical manufacturing can potentially release chemical constituents (leachables) into drug products. Prior to conducting toxicological risk assessments, it is crucial to establish the qualitative and quantitative methods for these leachables. In this study, we conducted a comprehensive screening and structure elucidation of 23 leachables (nonvolatile organic compounds, NVOCs) in two antibody drugs using multiple (self-built and public) databases and mass spectral simulation. We identified 7 compounds that have not been previously reported in medical or medicinal extractables and leachables. The confidence levels for identified compounds were classified based on analytical standards, literature references, and fragment assignments. Most of the identified leachables were found to be plasticizers, antioxidants, slip agents or polymer degradants. Polysorbate (namely Tween) is commonly used as an excipient for protein stabilization in biopharmaceutical formulations, but its ionization in liquid chromatography-electrospray ionization mass spectrometry can interfere with compound quantification. To address this, we employed a complexation-precipitation extraction method to reduce polysorbate content and quantify the analytes. The developed quantitative method for target NVOCs demonstrated high sensitivity (limit of quantification: 20 or 50 mu g/L), accuracy (recoveries: 77.2 to 109.5 %) and precision (RSD <= 8.2 %). Overall, this established method will facilitate the evaluation of NVOC safety in drug products.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据