4.7 Article

MA-RECON: Mask-aware deep-neural-network for robust fast MRI k-space interpolation

期刊

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.cmpb.2023.107942

关键词

k-space interpolation; Deep-learning; MRI reconstruction

向作者/读者索取更多资源

This study aims to enhance the generalization capabilities of DNN-based MRI reconstruction methods for undersampled k-space data. By introducing a mask-aware DNN architecture and training method, the under-sampled data and mask are encoded within the model structure, leading to improved performance. Rigorous testing on the widely accessible fastMRI dataset reveals that this approach demonstrates better generalization capabilities and robustness compared to traditional DNN methods.
Background and objective: High-quality reconstruction of MRI images from under-sampled 'k-space' data, which is in the Fourier domain, is crucial for shortening MRI acquisition times and ensuring superior temporal resolution. Over recent years, a wealth of deep neural network (DNN) methods have emerged, aiming to tackle the complex, ill-posed inverse problem linked to this process. However, their instability against variations in the acquisition process and anatomical distribution exposes a deficiency in the generalization of relevant physical models within these DNN architectures. The goal of our work is to enhance the generalization capabilities of DNN methods for k-space interpolation by introducing 'MA-RECON', an innovative mask-aware DNN architecture and associated training method.Methods: Unlike preceding approaches, our 'MA-RECON' architecture encodes not only the observed data but also the under-sampling mask within the model structure. It implements a tailored training approach that leverages data generated with a variety of under-sampling masks to stimulate the model's generalization of the under-sampled MRI reconstruction problem. Therefore, effectively represents the associated inverse problem, akin to the classical compressed sensing approach.Results: The benefits of our MA-RECON approach were affirmed through rigorous testing with the widely accessible fastMRI dataset. Compared to standard DNN methods and DNNs trained with under-sampling mask augmentation, our approach demonstrated superior generalization capabilities. This resulted in a considerable improvement in robustness against variations in both the acquisition process and anatomical distribution, especially in regions with pathology.Conclusion: In conclusion, our mask-aware strategy holds promise for enhancing the generalization capacity and robustness of DNN-based methodologies for MRI reconstruction from undersampled k-space data. Code is available in the following link: https://github .com /nitzanavidan /PD _Recon

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据