4.6 Article

Improved MPS models for simulating free surface flows

期刊

MATHEMATICS AND COMPUTERS IN SIMULATION
卷 218, 期 -, 页码 79-97

出版社

ELSEVIER
DOI: 10.1016/j.matcom.2023.11.015

关键词

Mesh-less methods; Modified gradient MPS model; Improved Laplacian MPS model; SPH method; Free surface problems

向作者/读者索取更多资源

This study introduces two improved Laplacian models for more accurate simulation of free surface flows in the context of the MPS method. The higher accuracy of these models compared to the traditional methods is verified through solving 2D Poisson equations and solving three benchmark free surface flow problems. These models can also resolve the issue of wave damping in the original MPS computations.
Two improved Laplacian models are introduced in this study for more accurate simulation of free surface flows in the context of the moving particle semi-implicit (MPS) method, a well-known mesh-less approach. The Euler equations are the governing equations of these flows without considering viscous forces which are solved in the Lagrangian frame by the MPS and two-step projection methods for spatial and temporal discretization, respectively. Considering the similarity between the MPS and SPH (smoothed particle hydrodynamics) methods, one of the introduced Laplacian models is formulated by a corrective matrix firstly proposed in an improved SPH method [28]. The other modified Laplacian model is also derived from the divergence of a newly developed MPS gradient model proposed for solving elasticity problems [33]. The higher accuracy of these methods compared to the classic SPH, MPS and even three modified SPH and MPS Laplacian models [7, 34, 44] is verified by solving 2D Poisson equations. Moreover, the excellent performance of the Laplacian models and the improved gradient model in obtaining smooth pressure field is validated by solving three benchmark free surface flows. Furthermore, the problem of wave damping in the original MPS computations can be resolved by using the applied models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据