4.4 Article

Myelination of preterm brain networks at adolescence

期刊

MAGNETIC RESONANCE IMAGING
卷 105, 期 -, 页码 114-124

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.mri.2023.11.001

关键词

Prematurity; Brain development; MRI multi-modality; Psychological analysis; IQ Adolescence/Adulthood; Preterm long-term outcomes

向作者/读者索取更多资源

Prematurity and preterm stressors have significant effects on the development of infants, especially at earlier gestations. While neonatal care advances have reduced preterm mortality rates, disability rates continue to grow in middle-income settings. Imaging the preterm brain using MR technology has improved our understanding of its development and the affected regions and networks. This research aims to support interventions, improve neurodevelopment, and provide accurate prognoses for preterm infants. This study focuses on the fully developed brain of extremely preterm subjects and examines myelin-related biomarkers to assess long-term effects. The findings suggest altered connectivity and cognitive outcomes in the adult preterm brain.
Prematurity and preterm stressors severely affect the development of infants born before 37 weeks of gestation, with increasing effects seen at earlier gestations. Although preterm mortality rates have declined due to the advances in neonatal care, disability rates, especially in middle-income settings, continue to grow. With the advances in MR imaging technology, there has been a focus on safely imaging the preterm brain to better understand its development and discover the brain regions and networks affected by prematurity. Such studies aim to support interventions and improve the neurodevelopment of preterm infants and deliver accurate prognoses. Few studies, however, have focused on the fully developed brain of preterm born infants, especially in extremely preterm subjects. To assess the long-term effect of prematurity on the adult brain, myelin related biomarkers such as myelin water fraction and g-ratio are measured for a cohort of 19-year-old extremely preterm born subjects. Using multi-modal imaging techniques that combine T2 relaxometry and neurite density information, the results show that specific brain regions associated with white matter injuries due to preterm birth, such as the posterior limb of the internal capsule and corpus callosum, are still less myelinated in adulthood. Furthermore, a weak positive relationship between myelin water fraction values and Full-Scale Intelligence Quotient (FSIQ) scores was found in multiple brain regions previously defined as less myelinated in the Extremely Preterm (EPT) cohort. These findings might suggest altered connectivity in the adult preterm brain and explain differences in cognitive outcomes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据