4.7 Article

Molecular mechanisms of nano-sized polystyrene plastics induced cytotoxicity and immunotoxicity in Eisenia fetida

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 465, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2023.133032

关键词

Polystyrene nanoplastics; Eisenia fetida immune cells; Cytotoxic effects; Immunotoxicity; Conformational and functional changes; Toxic mechanisms

向作者/读者索取更多资源

Nanoplastics have significant cytotoxic and immunotoxic effects on soil organisms, resulting from oxidative stress and impaired immune function. High-dose exposure to polystyrene nanoplastics causes oxidative stress-induced cytotoxicity, including reduced antioxidant defenses, DNA damage, and protein oxidation. Moreover, it inhibits immune function by activating the oxidative stress pathway.
Nanoplastics (NPs) are currently everywhere and environmental pollution by NPs is a pressing global problem. Nevertheless, until now, few studies have concentrated on the mechanisms and pathways of cytotoxic effects and immune dysfunction of NPs on soil organisms employing a multidimensional strategy. Hence, earthworm immune cells and immunity protein lysozyme (LZM) were selected as specific receptors to uncover the underlying mechanisms of cytotoxicity, genotoxicity, and immunotoxicity resulting from exposure to polystyrene nanoplastics (PS-NPs), and the binding mechanisms of PS-NPs-LZM interaction. Results on cells indicated that when earthworm immune cells were exposed to high-dose PS-NPs, it caused a notable rise in the release of reactive oxygen species (ROS), resulting in oxidative stress. PS-NPs exposure significantly decreased the cell viability of earthworm immune cells, inducing cytotoxicity through ROS-mediated oxidative stress pathway, and oxidative injury effects, including reduced antioxidant defenses, lipid peroxidation, DNA damage, and protein oxidation. Moreover, PS-NPs stress inhibited the intracellular LZM activity in immune cells, resulting in impaired immune function and immunotoxicity by activating the oxidative stress pathway mediated by ROS. The results from molecular studies revealed that PS-NPs binding destroyed the LZM structure and conformation, including

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据