4.7 Article

Low temperature chemistry of 1,2,4-trimethylbenzene in a blend with n-heptane

期刊

COMBUSTION AND FLAME
卷 259, 期 -, 页码 -

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.combustflame.2023.113209

关键词

1,2,4-trimethylbenzene; Low temperature oxidation; Monocyclic oxygenated aromatics; OPAH; n-heptane/1,2,4-trimethylbenzene mixture

向作者/读者索取更多资源

In this study, the low temperature oxidation of 1,2,4-trimethylbenzene was investigated using experiments and numerical simulations. The results showed the presence of toxic oxygenated aromatic compounds and proposed potential formation pathways. The numerical simulations accurately predicted the mole fractions of most compounds, but some compounds were missing.
As a representative aromatic component of practical fuels, understanding the low temperature chemistry of 1,2,4-trimethylbenzene under the reaction environment of fuel mixtures is necessary to improve the ignition and combustion process. In this work, low temperature oxidation of 1,2,4-trimethylbenzene was examined in a jet stirred reactor with reactants of n-heptane and 1,2,4-trimethybenzene in a fuel mixture (1:1 in mole, 500-800K, phi = 0.5, tau = 2.0s, p = 1bar). Chemical species and their mole fraction evolution with reaction temperatures were recorded by the time of flight molecular beam mass spectrometer using synchrotron vacuum ultraviolet radiation as photon ionization source. Molecular structures of 56 species were identified by comparing the species ionization energies and the photonionization efficiency curves. 25 chemical formula of monocyclic oxygenated aromatics and oxygenated polycyclic aromatic hydrocarbons (OPAH) are detected, and 12 of them are identified. Some of the OPAHs are more toxic than the polycyclic aromatic hydrocarbons, indicating the importance of revealing their formation pathways in low temperature oxidation of aromatics. Numerical simulations using the latest kinetic model from Lawrence Livermore National Laboratory well predict the mole fractions of the reactants and most intermediates, but many monocyclic oxygenated aromatics and OPAHs are missing. The detection and identification of key monocyclic oxygenated aromatics (e.g., peroxides, aldehydes, dialdehydes, and ketohydroperoxides of 1,2,4-trimethylbenzene) provide important clues to unravel the low temperature oxidation pathways of alkylated aromatics like 1,2,4-trimethylbenzene. For monocyclic oxygenated aromatics and OPAHs that are missing in the kinetic model, potential formation pathways were proposed based on the molecular structure information, which might be useful for future kinetic model development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据