4.7 Article

An experimental investigation on machining-induced surface/subsurface characteristics of nickel based Inc-718 alloy: A novel hybrid approach in milling process

期刊

TRIBOLOGY INTERNATIONAL
卷 191, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.triboint.2023.109120

关键词

Inconel-718; Heat assisted machining; Nanofluids; Tool wear; Microstructural behaviors; EBSD analysis

向作者/读者索取更多资源

This study investigates various methods to improve the machinability efficiency of Inconel 718 alloy while considering their effect on microstructural properties. The results show that hot+PMQL, hot+SiCNMQL, and hot+Al2O3-NMQL contribute significantly to the improvement of machinability characteristics. The EBSD analysis also reveals that a limited area is affected by heat in the hot machining environment and that the removal of the heated layer during milling process helps preserve the microstructure.
Nickel-based superalloy Inc-718 has become an indispensable alloy in critical sectors, especially in the aerospace industry, thanks to its unique characteristics. However, some properties of the alloy (especially low thermal conductivity and hot hardness) cause difficulties in its machinability. For this reason, comprehensive studies to improve the machinability of Inc-718 alloy by considering the microstructural properties are guiding. In this context, the present study uses various methods to increase the machinability efficiency of Inc-718, while also investigating their effect on microstructural properties. Firstly, the effect of the pre-heating process (hot), pureMQL (PMQL), nanofluid-MQL (NMQL), and hybrid methods (hot+PMQL and hot-NMQL) on the surface roughness, cutting forces, tool wear, vibration, and temperature was investigated while milling Inc-718 surfaces. Then the utilization of Electron Backscatter Diffraction (EBSD) facilitated a comprehensive examination of microstructural behavior, with a specific focus on Euler-colored maps and phase distribution maps, providing valuable insights into the material's behavior under distinct milling conditions. As a result, hot+PMQL, hot+SiCNMQL, and hot+Al2O3-NMQL provided an important contribution to the improvement of machinability characteristics. Also, it was seen that in EBSD analysis, a limited area is affected by heat in the hot machining environment. The crystal orientations of the pre-heated and hybrid machined Inc-718 alloy are highly similar to that of the dry-machined alloy. This similarity indicates that the removal of the heated layer from the workpiece during the milling process contributes to the preservation of the microstructure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据