4.7 Article

Interplay between edaphic and climatic factors unravels plant and microbial diversity along an altitudinal gradient

期刊

ENVIRONMENTAL RESEARCH
卷 242, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2023.117711

关键词

Environment; Edaphic factor; Climate fluctuation; Diversity; Microbes; Species richness

向作者/读者索取更多资源

Altitude influences biodiversity and physiochemical soil attributes in terrestrial ecosystems. The distribution and interactions of plant and microbial species are determined by altitudinal variation. Different taxonomic groups show different response patterns along the altitudinal gradient, with plant and fungal diversity increasing and archaeal and bacterial diversity decreasing with increasing altitude.
Altitude influences biodiversity and physiochemical soil attributes in terrestrial ecosystems. It is of immense importance to know the patterns of how interactions among climatic and edaphic factors influence plant and microbial diversity in various ecosystems, particularly along the gradients. We hypothesize that altitudinal variation determines the distribution of plant and microbial species as well as their interactions. To test the hypothesis, different sites with variable altitudes were selected. Analyses of edaphic factors revealed significant (p < 0.001) effects of the altitude. Soil ammonium and nitrate were strongly affected by it contrary to potassium (K), soil organic matter and carbon. The response patterns of individual taxonomic groups differed across the altitudinal gradient. Plant species and soil fungal diversity increased with increasing altitude, while soil archaeal and bacterial diversity decreased with increasing altitude. Plant species richness showed significant positive and negative interactions with edaphic and climatic factors. Fungal species richness was also significantly influenced by the soil ammonium, nitrate, available phosphorus, available potassium, electrical conductivity, and the pH of the soil, but showed non-significant interactions with other edaphic factors. Similarly, soil variables had limited impact on soil bacterial and archaeal species richness along the altitude gradient. Proteobacteria, Ascomycota, and Thaumarchaeota dominate soil bacterial, fungal, and archaeal communities, with relative abundance of 27.4%, 70.56%, and 81.55%, respectively. Additionally, Cynodon dactylon is most abundant plant species, comprising 22.33% of the recorded plant taxa in various study sites. RDA revealed that these communities influenced by certain edaphic and climatic factors, e.g., Actinobacteria strongly respond to MAT, EC, and C/N ratio, Ascomycota and Basidiomycota show strong associations with EC and MAP, respectively. Thaumarcheota are linked to pH, and OM, while Cyperus rotundus are sensitive to AI and EC. In conclusion, the observed variations in microbial as well as plant species richness and changes in soil properties at different elevations provide valuable insights into the factors determining ecosystem stability and multifunctionality in different regions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据