4.7 Article

Imaging peroxynitrite in endoplasmic reticulum stress and acute lung injury with a near-infrared fluorescent probe

期刊

ANALYTICA CHIMICA ACTA
卷 1286, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.aca.2023.342050

关键词

Fluorescent probe; Near -infrared; Acute lung injury; Endoplasmic reticulum stress

向作者/读者索取更多资源

A near-infrared fluorescent probe has been developed to accurately measure the levels of peroxynitrite (ONOO-) in the endoplasmic reticulum (ER) in acute lung injury (ALI). The probe demonstrated rapid response, high selectivity, good sensitivity, and enhanced fluorescence intensity in response to ONOO-. It was successfully used to detect changes in ONOO- levels and showed significant increases in an ALI cell model and an ALI mouse model.
Background: The cellular endoplasmic reticulum (ER) is responsible for various functions, including protein synthesis, folding, distribution, and calcium ion storage. Studies have linked ER stress with acute lung injury (ALI), which can result in oxidative stress and even cell death. Peroxynitrite (ONOO-) is a well-known reactive oxygen species (ROS) that contributes to various physiological and pathological processes in oxidative stress diseases. To understand the role of ER ONOO- in ALI, it is crucial to accurately measure its level in the ER. Unfortunately, there is currently no probe available to detect ER ONOO- in an ALI model. Results: To address this, we developed three near-infrared (NIR) fluorescent probes (DCM-F-ONOO, DCM-Cl-ONOO, and DCM-Br-ONOO) for the detection of ONOO- using pentafluorobenzenesulfonate (PFBS) moieties as fluorescence quenchers. Through comprehensive testing, we selected DCM-Br-ONOO as the best NIR fluo-rescent probe due to its rapid response (within 3 min), high selectivity, good sensitivity (LOD = 2.3 nM), and approximately 66-fold enhanced response to ONOO- in fluorescence intensity. The probe was successfully applied to detect changes in ONOO- levels induced by different drugs in the ER of living cells. Importantly, a significant increase in the level of ONOO- was observed in the ER of an ALI cell model (4.5-fold) and an ALI mouse model (2.5-fold) using the probe, which is essential for understanding the role of ONOO- in ER-associated diseases. Significance: Using DCM-Br-ONOO as a probe, present work further validated that the elevated levels of ONOO- secretion were accompanied by the ALI progressed. These findings may provide valuable results for figuring out the biological roles that ONOO- played in ALI.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据