4.7 Article

Chaotic dynamics of fractional viscoelastic PET membranes subjected to combined harmonic and variable axial loads

期刊

RESULTS IN PHYSICS
卷 56, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.rinp.2023.107202

关键词

Viscoelastic PET membrane; Combined loads; Chaotic vibrations; Caputo-type fractional derivative

向作者/读者索取更多资源

This paper investigates the nonlinear chaotic vibrations of fractional viscoelastic PET membranes subjected to combined harmonic and variable axial loads. The viscoelasticity of PET membrane is characterized by the fractional Kelvin-Voigt model. The reliability of the numerical strategy is proved by comparing the results with available fractional systems and examples. The influence of system parameters on chaotic behaviors is described using bifurcation diagrams and detailed responses. This research provides a fundamental framework for controlling viscoelastic substrates in flexible manufacturing.
Nonlinear chaotic vibrations of fractional viscoelastic PET (polyethylene terephthalate) membranes subjected to combined harmonic and variable axial loads is investigated in this paper. Axial tension variations arise from the machine disturbances of the processing line of roll-to-roll manufacturing. The viscoelasticity of PET membrane is characterized by the fractional Kelvin-Voigt model. Based on the Hamilton principle, the equation of motion of the membrane is established with the consideration of geometric nonlinearity, and the Galerkin procedure is employed to discretize the resulting governing equation. For the solution, the finite difference method is utilized in conjunction with the Caputo-type fractional derivative to reliably estimate the nonlinear response of fractional viscoelastic PET membrane. The reliability of this numerical strategy is proved by the available results of the fractional system and comparison examples. The influence of system parameters on chaotic behaviors is described by the bifurcation diagram and the detailed responses at the set bifurcation parameters. The fractional model together with the analysis provides a fundamental framework for the control of viscoelastic substrates in flexible manufacturing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据