4.7 Article

Magneto-thermo-elastic coupled free vibration and nonlinear frequency analytical solutions of FGM cylindrical shell

期刊

THIN-WALLED STRUCTURES
卷 195, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.tws.2023.111406

关键词

FGM cylindrical shell; Nonlinear vibration; Natural frequency; Magnetic field; Temperature field; Multi-scale method

向作者/读者索取更多资源

The magneto-thermo-elastic coupled free vibration of functionally graded materials cylindrical shell is investigated in this study. The vibration equation in multi-physical field is established and solved using the Hamilton principle and the multi-scale method. The numerical results show that the natural frequency is influenced by various factors such as volume fraction index, initial amplitude, temperature, and magnetic induction intensity.
The magneto-thermo-elastic coupled free vibration of functionally graded materials (FGM) cylindrical shell is investigated. Based on the physical neutral surface theory and Kirchhoff-Love theory, the expressions of internal force and internal torque are obtained by considering the constitutive relationship that includes thermal stress. According to the electromagnetic elasticity theory, the model of Lorentz forces of the shell in magnetic field are derived. The expressions of potential energy, kinetic energy and its variational operators are given by introducing geometric nonlinearity, respectively. Based on Hamilton principle, the magneto-thermal-elastic coupled vibration equation of FGM cylindrical shell in multi-physical field is established. The displacement functions under simply supported boundary conditions are solved, which are combined with Galerkin method for derivation of nonlinear ordinary differential equations. The second-order approximate analytical solution of natural frequency is obtained by applying the multi-scale method. The characteristic curves of natural frequency with different parameters are drawn through numerical examples. The results show that reducing the volume fraction index and increasing the initial amplitude can lead to the increase of the natural frequency under transient conditions. With the increase of temperature and magnetic induction intensity, the natural frequency decreases. In addition, the natural frequency is also influenced by the shell size and volume fraction index.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据