4.8 Article

A comprehensive evaluation of the temporal and spatial fouling characteristics of RO membranes in a full-scale seawater desalination plant

期刊

WATER RESEARCH
卷 249, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2023.120914

关键词

Reverse osmosis; Membrane fouling; Seawater desalination; Biofouling

向作者/读者索取更多资源

The fouling of seawater reverse osmosis membranes is a persistent challenge in desalination. This study monitored the operational performance of a desalination plant for 7 years and the fouling development in different areas of membrane modules. The findings showed that operational performance declined over time and fouling mainly occurred at the feed side of the modules, with the highest microbial diversity. Keystone species like Chloroflexi and Planctomycetes played an important role in maintaining community structure and biofilm maturation. Polysaccharides, soluble microbial products, marine humic acid-like substances, and inorganic substances contributed to fouling. Overall, biofouling had a significant impact on membrane fouling after 7 years of operation.
The fouling of seawater reverse osmosis (SWRO) membranes remains a persistent challenge in desalination. Previous research has focused mainly on fouling separately; however, organic, inorganic, and biofouling can coexist and influence each other. Hence, in-depth study of the spatiotemporal changes in actual combined fouling in full-scale seawater desalination will provide more effective information for fouling investigation and control. In this study, we monitored (i) the operational performance of a full-scale desalination plant for 7 years and (ii) the development and characterization of membrane and spacer fouling at different locations of spiral-wound membrane modules sampled after 2.5-, 3.5-, and 7-year operation. The findings showed that (i) operational performance indicators declined with time (normalized flux 40 % reduction, salt rejection 2 % in 7 years), with a limited effect of the 20-day cleaning frequency, (ii) fouling accumulation in the membrane module mainly occurred at the feed side of the lead module and the microbial community in these area exhibited the highest diversity, (iii) the dominant microbial OTUs belonged mainly to Proteobacteria (43-70 %), followed by Bacteroidetes (10-11 %), (iv) Phylogenetic molecular ecological networks and Spearman correlation analysis revealed that Chloroflexi (Anaerolineae) and Planctomycetes were keystone species in maintaining the community structure and biofilm maturation and significantly impacted the foulant content on the SWRO membrane, even with low abundance, and that (v) fouling accumulation was composed of polysaccharides, soluble microbial products, marine humic acid-like substances, and inorganic Ca/Fe/Mg/Si dominate the fouling layer of both the membrane and spacer. Overall, variation partitioning analysis quantitatively describes the increasing contribution of biofouling over time. Ultimately, the organic-inorganic-biofouling interaction (70 %) significantly contributed to the overall fouling of the membrane after 7 years of operation. These results can be used to develop more targeted fouling control strategies to optimize SWRO desalination plant design and operation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据