4.7 Article

Augmentation of solar still distillation performance using waste heat energy and guiding vanes: A field study

期刊

DESALINATION
卷 572, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.desal.2023.117150

关键词

Solar still distillation unit; Waste heat energy; Guide vanes; Productivity; Thermal efficiency

向作者/读者索取更多资源

This research proposes a new method of using wasted thermal energies as an additional heating source for solar still distillation units (SSDUs) to increase productivity and reduce pollution and global warming. By testing two SSDUs, the study shows that heating airflow can raise temperatures, enhance freshwater production, and improve system thermal efficiency.
This research proposes a new approach for increasing the productivity of solar still distillation units (SSDUs) while reducing environmental pollution and global warming by exploiting the wasted thermal energies from industrial and domestic applications as an additional heating source for the SSDU. This field study is accomplished by testing two SSDUs simultaneously; the first is a conventional SSDU, and the second is attached with an air duct beneath its base inside which a set of guide vanes is fitted on the lower horizontal side of the duct at several angles (0 degrees -135 degrees). Hot air flows through the duct simulating the waste heat source at several mass fluxes (1.45-6 kg/m2.s). The findings show that the heating airflow raised the temperatures and enhanced freshwater production and system thermal efficiency. The improvements are boosted by increasing the airflow rate and expanding the vane angle up to 120 degrees. After a full day of testing, the modified SSDU achieved maximum productivity of 17.13 L/m2 and thermal efficiency of 34.2 %. Compared to the conventional SSDU, the modified SSDU showed maximum enhancements of 442 % in freshwater productivity and 66.8 % in thermal efficiency, leading to a reduction of the total cost of producing 1 L of freshwater by 70.5 %.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据