4.7 Article

Life-cycle assessment and prediction on ultimate capacity of corroded Q690 steel columns with H-section under bi-directional cyclic loading

期刊

THIN-WALLED STRUCTURES
卷 195, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.tws.2023.111391

关键词

Life-cycle assessment; H -section columns; Bi-directional cyclic loading; Corrosion; Ageing effect

向作者/读者索取更多资源

In this study, the mechanical properties of Q690 steel H-section columns under bi-directional cyclic loads are investigated, considering the time-varying characteristics of corrosion. A refined finite element (FE) model is built to analyze the degradation of mechanical property and failure mechanisms of steel columns with different design parameters during the whole life-cycle. The study proposes a quantitative calculation method for the ultimate resistance and damage index of steel columns, taking into account the ageing effects. The findings emphasize the importance of considering the ageing effects of steel columns in seismic design.
The structures or structural members made of high-strength steel may have time-varying mechanical properties in whole life-cycle due to the ageing effects. In particular, the corroded steel structures in high-seismicity regions could have unexpected failure modes when subjected multi-directional excitations. Therefore, in this study, the mechanical properties of Q690 steel H-section columns during the life-cycle under bi-directional cyclic loads are investigated. Firstly, a refined finite element (FE) model is built, which takes the time-varying of corrosion characteristics into consideration. Then, the degradations of mechanical property and failure mechanisms of steel columns with different design parameters at whole life-cycle are analysed by the FE models. Finally, a quantitative calculation method of ultimate resistance and damage index of steel columns considering ageing effects is proposed. The findings demonstrate that several factors affect the ultimate strength of steel columns during the life-cycle stage, with the axial compression ratio and flange width-thickness ratio having the greatest impacts on the ultimate capacity. The ageing effect decreases the plastic flow capacity of steel columns, increases the stress concentration, and induces the failure mode transition from plastic flow to buckling failure. The ageing effect may be accurately estimated by the suggested calculation method for the ultimate capacity and damage index of steel columns at the life-cycle stage. The findings of this study highlight the significance of taking into account the ageing effects of steel columns in the seismic design.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据