4.8 Article

Therapeutic drug monitoring mediated by the cooperative chemical and electromagnetic effects of Ti3C2TX modified with Ag nanocubes

期刊

BIOSENSORS & BIOELECTRONICS
卷 245, 期 -, 页码 -

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2023.115844

关键词

SERS; Electromagnetic-chemical dual-enhancement; Ritonavir and ibrutinib; Drug monitoring

向作者/读者索取更多资源

In this study, a dual-enhancement SERS substrate based on Ti3C2TX and Ag nanocubes was fabricated for precise quantification of ritonavir and ibrutinib in serum. The formation of numerous electromagnetic hotspots between Ag nanocubes facilitated effective photo-induced charge transfer. The composite substrate showed excellent sensitivity, achieving low detection limits and high recoveries, making it promising for monitoring and identification of clinical blood drug concentration.
It is pivotal for the credible utilization of surface-enhanced Raman scattering (SERS) technique in clinical drug monitoring to exploit versatile substrates with dependable quantitative detection and robust recognition abilities. Herein, a commendable electromagnetic-chemical dual-enhancement SERS substrate dependent on Ti3C2TX and Ag nanocubes (Ag NCs) was fabricated for the precise quantification of ritonavir and ibrutinib in serum. Specifically, it was revealed that numerous electromagnetic hotspots emerged nearby the extremely tiny nanogaps among the intimately clustered Ag NCs, which also acted as optimal channels to facilitate effective photo-induced charge transfer (PICT) between the two-dimensional Ti3C2TX matrix and target molecules. The cooperation between electromagnetic and chemical effects yielded a satisfactory enhancement factor (EF) of 4.77 x 107 for the composite substrate. Benefiting from the remarkable sensitivity of the Ti3C2TX/Ag NCs composite substrate, the low limit of detection (LOD) at 10-6 mg/mL was successfully attained, along with exceptional recoveries of exceeding 90% for ritonavir and ibrutinib in serum. Considering its reliability and simplicity, our strategy holds immense promise for its utilization in efficient monitoring and identification of clinical blood drug concentration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据