4.7 Article

A ratiometric molecular imprinted electrochemiluminescence sensor based on enhanced luminescence of CdSe@ZnS quantum dots by MXene@NaAsc for detecting uric acid

期刊

BIOELECTROCHEMISTRY
卷 156, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.bioelechem.2023.108610

关键词

Electrochemiluminescence sensor; Molecularly imprinted polymer; CdSe@ZnS quantum dots; MXene; Uric acid

向作者/读者索取更多资源

An unlabeled ratiometric molecular imprinted electrochemiluminescence sensor was developed for the determination of trace uric acid using MXene@NaAsc, CdSe@ZnS quantum dots, and molecularly imprinted polymer composites modified glass carbon electrode. This sensor, with easy preparation, great selectivity, and excellent sensitivity, successfully detected uric acid in human serum.
An unlabeled ratiometric molecular imprinted electrochemiluminescence sensor was developed for the determination of trace uric acid, based on MXene@NaAsc nanocomposites, CdSe@ZnS quantum dots and molecularly imprinted polymer composites modified glass carbon electrode. MXene@NaAsc stably enhanced the electron transfer and improved electrochemiluminescence intensity by acting as a base platform and signal amplifier for CdSe@ZnS quantum dots. Specific molecular imprinting cavities based on electropolymerization with o-phenylenediamine were formed to specifically identify uric acid. Combining the good sensitivity of electrochemiluminescence and the excellent selectivity of molecularly imprinted polymer, the ratio of optical signal and electrical signal was used as a comprehensive signal to achieve the detection of uric acid. Based on this, uric acid was detected in the range from 1 x 10-10 to 1 x 10-4 mol/L with the LOD of 18.13 pmol/L (S/N = 3). The developed sensor with easy preparation, great selectivity and excellent sensitivity could successfully detect uric acid in human serum.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据