4.6 Article

Tough polycyclooctene nanoporous membranes from etchable block copolymers

期刊

SOFT MATTER
卷 20, 期 2, 页码 437-448

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3sm01498c

关键词

-

向作者/读者索取更多资源

Porous materials with nanometer-scale pores have important applications as nanoporous membranes. In this study, ABA triblock copolymers were used as precursors to produce nanoporous polymeric membranes (NPMs) in thin film form by degrading the end blocks. Polycyclooctene (PCOE) NPMs with tunable pore sizes were successfully prepared using solvent casting technique. Oxygen plasma etching was employed to improve the surface porosity and hydrophilicity of the membranes. This study provides a straightforward method to produce tough NPMs with high porosity and hydrophilic surface properties.
Porous materials with pore dimensions of the nanometer length scale are useful as nanoporous membranes. ABA triblock copolymers are convenient precursors to such nanoporous materials if the end blocks are easily degradable (e.g., polylactide or PLA), leaving nanoporous polymeric membranes (NPMs) if in thin film form. The membrane properties are dependent on midblock monomer structure, triblock copolymer composition, overall molar mass, and polymer processing conditions. Polycyclooctene (PCOE) NPMs were prepared using this method, with tunable pore sizes on the order of tens of nanometers. Solvent casting was shown to eliminate film defects and allowed achievement of superior mechanical properties over melt processing techniques, and PCOE NPMs were found to be very tough, a major advance over previously reported NPMs. Oxygen plasma etching was used to remove the surface skin layer to obtain membranes with higher surface porosity, membrane hydrophilicity, and flux of both air and water. This is a straightforward method to reliably produce highly tough NPMs with high levels of porosity and hydrophilic surface properties. Polycyclooctene-polylactide triblock copolymer synthesis and subsequent processing via solvent casting, polylactide etching, and plasma etching to yield tunable and tough nanoporous membranes with high surface porosities and hydrophilic properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据