4.8 Article

A Homopolymer of Xanthenoxanthene-Based Polycyclic Heteroaromatic for Efficient and Stable Perovskite Solar Cells

期刊

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/anie.202315814

关键词

Conjugated Polymer; Hole Transport; Modulus; Polycyclic Heteroaromatic; Solar Cell

向作者/读者索取更多资源

Researchers have improved the performance of perovskite solar cells by synthesizing a new material called p-TNI2. Compared to traditional materials, p-TNI2 has advantages in terms of carrier mobility and thermal stability, while achieving a similar high efficiency.
Highly efficient perovskite solar cells typically rely on spiro-OMeTAD as a hole transporter, achieving a 25.7 % efficiency record. However, these cells are susceptible to harsh 85 degrees C conditions. Here, we present a peri-xanthenoxanthene-based semiconducting homopolymer (p-TNI2) with matched energy levels and a high molecular weight, synthesized nearly quantitatively through facile oxidative polymerization. Compared to established materials, p-TNI2 excels in hole mobility, morphology, modulus, and waterproofing. Implementing p-TNI2 as the hole transport layer results in n-i-p perovskite solar cells with an initial average efficiency of 24.6 %, rivaling 24.4 % for the spiro-OMeTAD control cells under identical conditions. Furthermore, the p-TNI2-based cells exhibit enhanced thermostability at 85 degrees C and operational robustness. A semiconducting homopolymer, hailing from an electron-rich peri-xanthenoxanthene-based polycyclic aromatic monomer, produces uniform films with heightened hole mobility, amplified modulus, and constrained species diffusion. These attributes enable the construction of perovskite solar cells with an initial average efficiency of 24.6 %, which also exhibit enhanced thermostability at 85 degrees C and operational durability.image

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据