4.8 Article

Selective Etching of Metal-Organic Frameworks for Open Porous Structures: Mass-Efficient Catalysts with Enhanced Oxygen Reduction Reaction for Fuel Cells

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 145, 期 50, 页码 27262-27272

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.3c05544

关键词

-

向作者/读者索取更多资源

This study developed a method for constructing an open-pore structure in metal-organic frameworks through chelation-assisted selective etching, resulting in atomically dispersed Fe atoms anchored on a carbon framework. The open-pore structure reduces oxygen transport resistance, demonstrating excellent oxygen reduction reaction activity and stability.
Fe-N-x-C-based single-atom (SA-Fe-N-C) catalysts have shown favorable oxygen reduction reaction (ORR) activity. However, their application in proton exchange membrane fuel cells is hindered by reduced performance owing to the thick catalyst layer, restricting mass transfer and the O-2 supply. Metal-organic frameworks (MOFs) are a promising class of crystal materials, but their narrow pores exacerbate the sluggish mass-transport properties within the catalyst layer. This study developed an approach for constructing an open-pore structure in MOFs via chelation-assisted selective etching, resulting in atomically dispersed Fe atoms anchored on an N, S co-doped carbon framework. The open-pore structure reduces oxygen transport resistance in the membrane electrode assembly (MEA) with unprecedented ORR activity and stability, as evidenced by finite element simulations. In an acidic electrolyte, the OP-Fe-NC catalyst shows a half-wave potential of 0.89 V vs RHE, surpassing Pt/C by 20 mV, and a current density of 29 mA cm(-2) at 0.9 ViR-free in the MEA. This study provides an effective structural strategy for fabricating electrocatalysts with high mass efficiency and atomic precision for energy storage and conversion devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据