4.0 Article

Woody biomass increases across three contrasting land uses in Hurungwe, mid-Zambezi valley, Zimbabwe

出版社

TAYLOR & FRANCIS LTD
DOI: 10.2989/20702620.2023.2267043

关键词

climate change; disturbance; land use change; resource utilisation; sustainable use; woodlands

类别

向作者/读者索取更多资源

This study assessed the changes in aboveground carbon stocks and woodland cover in different land use types. The results showed that miombo woodlands had increased carbon stocks and cover in all three land use types, but the increase was lower in areas with higher utilization.
Globally, Miombo woodlands store important quantities of carbon, with tree cover and carbon stocks strongly determined by human use. We assessed woodland cover and aboveground carbon (AGC) stocks of miombo along a utilisation gradient on three different land use types, that is, a national park, a buffer zone and a communal area. Woodland cover and carbon stock changes were assessed through mapping of AGC between 2007 and 2017 using Phased Array L-Band Synthetic Aperture Radar observations (ALOS-PALSAR 1 and 2). Woodland cover was higher in the national park and the buffer zone than in the communal area for both 2007 and 2017. In 2007, mean AGC stock was not significantly different (p = 0.005) across all three land use types. However, in 2017, mean AGC was significantly lower (p < 0.001) in the buffer zone and communal area than in the national park. In all three land use types, Miombo woodland cover and mean AGC gains outweighed losses over the 10-year period. AGC gains were significantly higher (p < 0.001) in the national park than in both the buffer zone and the communal area. Results of the study indicate that woodland cover and aboveground carbon increased in all three land use types despite the observed human disturbance over the study period. Both variables recorded a lower increase with elevated utilisation. The study concluded that sustainable resource utilisation is possible without loss of such ecosystem services as carbon sequestration and climate change mitigation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据