4.6 Article

Multifunctional terahertz device with active switching between bimodal perfect absorption and plasmon-induced transparency

期刊

MATERIALS RESEARCH BULLETIN
卷 171, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.materresbull.2023.112635

关键词

Perfect absorption; Plasmon-induced transparency; Terahertz devices; Multifunctional; Sensing and slow light

向作者/读者索取更多资源

In this paper, a terahertz (THz) micronano device that can switch between bimodal absorption and plasmon-induced transparency (PIT) is proposed. The device consists of layers of graphene, silica, and vanadium dioxide, and has a simple structure, easy tuning, and wide-angle absorption. The device achieves perfect absorption at specific frequencies and is highly sensitive to environmental refractive index. It also has the functions of a three-frequency asynchronous optical switch and slow light effect.
In this paper, we propose a terahertz (THz) micronano device that can actively switch between bimodal absorption and plasmon-induced transparency (PIT). The device mainly consists of a continuous top layer of graphene, an intermediate layer of silica and a bottom layer of vanadium dioxide, and has a simple structure, easy tuning and wide angle absorption. Through impedance matching and electromagnetic field distribution, we explain the generation of perfect absorption with double peaks. The simulation and multiple reflection interference theory (MRIT) show that the device achieves perfect absorption at 3.02 THz and 3.68 THz, and is highly sensitive to environmental refractive index, with a sensitivity of 1.1 THz/RIU. In addition, when the PIT effect is realized through the phase change characteristic of VO2, the device not only has the function of three-frequency asynchronous optical switch, but also has a strong slow light effect, and the maximum group delay (tau g) is 35.4 ps. Thus, our design allows simultaneous switching, modulation, sensing, and slow light functions in the optical path and will greatly facilitate the development of THz multifunctional devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据