4.7 Article

LDCNet: Lightweight dynamic convolution network for laparoscopic procedures image segmentation

期刊

NEURAL NETWORKS
卷 170, 期 -, 页码 441-452

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neunet.2023.11.055

关键词

Medical image segmentation; Colonoscopy; Lightweight network; Attention; Deep learning

向作者/读者索取更多资源

Medical image segmentation is crucial for modern healthcare systems, especially in reducing surgical risks and planning treatments. Transanal total mesorectal excision (TaTME) has become an important method for treating colon and rectum cancers. Real-time instance segmentation during TaTME surgeries can assist surgeons in minimizing risks. However, the dynamic variations in TaTME images pose challenges for accurate instance segmentation.
Medical image segmentation is fundamental for modern healthcare systems, especially for reducing the risk of surgery and treatment planning. Transanal total mesorectal excision (TaTME) has emerged as a recent focal point in laparoscopic research, representing a pivotal modality in the therapeutic arsenal for the treatment of colon & rectum cancers. Real-time instance segmentation of surgical imagery during TaTME procedures can serve as an invaluable tool in assisting surgeons, ultimately reducing surgical risks. The dynamic variations in size and shape of anatomical structures within intraoperative images pose a formidable challenge, rendering the precise instance segmentation of TaTME images a task of considerable complexity. Deep learning has exhibited its efficacy in Medical image segmentation. However, existing models have encountered challenges in concurrently achieving a satisfactory level of accuracy while maintaining manageable computational complexity in the context of TaTME data. To address this conundrum, we propose a lightweight dynamic convolution Network (LDCNet) that has the same superior segmentation performance as the state-of-the-art (SOTA) medical image segmentation network while running at the speed of the lightweight convolutional neural network. Experimental results demonstrate the promising performance of LDCNet, which consistently exceeds previous SOTA approaches. Codes are available at github.com/yinyiyang416/LDCNet.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据