4.7 Article

Experimental study on the slamming pressure distribution of a 3D stern model entering water with pitch angles

期刊

OCEAN ENGINEERING
卷 291, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.oceaneng.2023.116404

关键词

Drop test; Stern impact; Pitch angle; Slamming loads

向作者/读者索取更多资源

This study investigates the load characteristics of a three-dimensional stern model with pitch angle through a drop test, and reveals complex characteristics of pressure distribution near the stern shaft. The study also shows that the vibration characteristics of the load are influenced by the drop height and pitch angle, with the drop height having a greater effect on the high-frequency components.
Accurate prediction of slamming loads on stern impact is quite difficult due to complex air effects. In this paper, the load characteristics of a three-dimensional stern model with pitch angle are studied by a drop test. The pressure distribution and impact velocity at a drop of 250-900 mm and a pitch angle of 0-15 degrees are measured. The validity of the measurement is verified based on the repeatable analysis. The load characteristics under the pitch angle are further analyzed. The pressure near the stern shaft has complex characteristics, such as multi-peak values and high-frequency oscillation. The vibration sources of pressure are clarified, where the cavity is the main, and the support frame is the secondary. In addition, the vibration characteristics of the load are also affected by the height and pitch angle, in which the drop height has a greater effect on the high-frequency components. The influence of the pitch angle on the load characteristics is further discussed. The load peak increases 30%-60% from 0 degrees to 15 degrees. Finally, the influence of impact velocity and three-dimensional flow on the pressure peak is discussed. These findings reveal the law of stern load affected by pitch angle.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据