4.7 Article

Nanotechnology-based analytical techniques for the detection of contaminants in aquatic products

期刊

TALANTA
卷 269, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.talanta.2023.125462

关键词

Biosensor; Nanomaterial; Food safety; Pathogenic bacteria; Marine toxin; Heavy metal ions

向作者/读者索取更多资源

The food safety of aquatic products is a global concern. Nanotechnology-based analyses have advantages in the detection of bacteria, metal ions, and small molecule contaminants. This review summarizes the recent advances in biosensing strategies for aquatic products and highlights the application of nanomaterials, lateral flow-based biosensors, surface-enhanced Raman scattering, microfluidic chips, and molecular imprinting technologies.
Food safety of aquatic products has attracted considerable attention worldwide. Although a series of conventional bioassays and instrumental methods have been developed for the detection of pathogenic bacteria, heavy metal residues, marine toxins, and biogenic amines during the production and storage of fish, shrimp, crabs et al., the nanotechnology-based analyses still have their advantages and are promising since they are cost-efficient, highly sensitive and selective, easy to conduct, facial design, often require no sophisticated instruments but with excellent detection performance. This review aims to summarize the advances of various biosensing strategies for bacteria, metal ions, and small molecule contaminants in aquatic products during the last five years, The review highlights the development in nanotechnologies applied for biorecognition process, signal transduction and amplification methods in each novel approach, the nuclease-mediated DNA amplification, nanomaterials (noble metal nanoparticle, metal-organic frameworks, carbon dots), lateral flow-based biosensor, surface-enhanced Raman scattering, microfluidic chip, and molecular imprinting technologies were especially emphasized. Moreover, this study provides a view of current accomplishments, challenges, and future development directions of nanotechnology in aquatic product safety evaluation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据