4.7 Article

Carbon fiber-based multichannel solid-contact potentiometric ion sensors for real-time sweat electrolyte monitoring

期刊

ANALYTICA CHIMICA ACTA
卷 1287, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.aca.2023.342046

关键词

Ion -selective electrodes; Wearable sensor; Carbon fiber; Solid-contact

向作者/读者索取更多资源

This study presents a method for constructing wearable sweat electrolyte sensors using carbon fiber-based solid-contact ion-selective electrodes (SC-ISEs). By using carbon fibers extracted from commercial cloth as electrode material, the cost and reproducibility issues of flexible SC-ISEs were addressed. The results showed that the carbon fiber-based SC-ISEs exhibited reversible voltammetric and stable impedance performances, and had high reproducibility of standard potentials between normal and bending states.
Solid-contact ion-selective electrodes (SC-ISEs) feature miniaturization and integration that have gained extensive attention in non-invasive wearable sweat electrolyte sensors. The state-of-the-art wearable SC-ISEs mainly use polyethylene terephthalate, gold and carbon nanotube fibers as flexible substrates but suffer from uncomfortableness, high cost and biotoxicity. Herein, we report carbon fiber-based SC-ISEs to construct a four-channel wearable potentiometric sensor for sweat electrolytes monitoring (Na+/K+/pH/Cl- ). The carbon fibers were extracted from commercial cloth, of which the starting point is addressing the cost and reproducibility issues for flexible SC-ISEs. The bare carbon fiber electrodes exhibited reversible voltammetric and stable impedance performances. Further fabricated SC-ISEs based on corresponding ion-selective membranes disclosed Nernstian sensitivity and anti-interface ability toward both ions and organic species in sweat. Significantly, these carbon fiber-based SC-ISEs revealed high reproducibility of standard potentials between normal and bending states. Finally, a textile-based sensor was integrated with a solid-contact reference electrode, which realized on-body sweat electrolytes analysis. The results displayed high accuracy compared with ex-situ tests by ion chromatography. This work highlights carbon fiber-based multichannel wearable potentiometric ion sensors with low cost, biocompatibility and reproducibility.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据