4.8 Article

Exploring the degradation of silver nanowire networks under thermal stress by coupling in situ X-ray diffraction and electrical resistance measurements

期刊

NANOSCALE
卷 16, 期 2, 页码 564-579

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3nr02663a

关键词

-

向作者/读者索取更多资源

The thermal instability of silver nanowires leads to increased electrical resistance in AgNW networks. Understanding the relationship between structural and electrical properties of AgNW networks is crucial for their integration as transparent electrodes in flexible optoelectronics. In situ X-ray diffraction measurements were used to study the crystallographic evolution of Ag-specific Bragg peaks during thermal ramping, revealing differences in thermal and structural transitions between bare and SnO2-coated AgNW networks.
The thermal instability of silver nanowires (AgNWs) leads to a significant increase of the electrical resistance of AgNW networks. A better understanding of the relationship between the structural and electrical properties of AgNW networks is primordial for their efficient integration as transparent electrodes (TEs) for next-generation flexible optoelectronics. Herein, we investigate the in situ evolution of the main crystallographic parameters (i.e. integrated intensity, interplanar spacing and peak broadening) of two Ag-specific Bragg peaks, (111) and (200), during a thermal ramp up to 400 degrees C through in situ X-ray diffraction (XRD) measurements, coupled with in situ electrical resistance measurements on the same AgNW network. First, we assign the (111) and (200) peaks of chi-scans to each five crystallites within AgNWs using a rotation matrix model. Then, we show that the thermal transition of bare AgNW networks occurs within a temperature range of about 25 degrees C for the electrical properties, while the structural transition spans over 200 degrees C. The effect of a protective tin oxide coating (SnO2) on AgNW networks is also investigated through this original in situ coupling approach. For SnO2-coated AgNW networks, the key XRD signatures from AgNWs remain constant, since the SnO2 coating prevents Ag atomic surface diffusion, and thus morphological instability (i.e. spheroidization). Moreover, the SnO2 coating does not affect the strain of both (111) and (200) planes. The thermal expansion for bare and SnO2-coated AgNW networks appears very similar to the thermal expansion of bulk Ag. Our findings provide insights into the underlying failure mechanisms of AgNW networks subjected to thermal stress, helping researchers to develop more robust and durable TEs based on metallic nanowire networks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据