4.8 Article

Co-gasification of biomass and oil shale under CO2 atmosphere: Comparative analysis of fixed-bed reactor, gas chromatography and thermogravimetric analysis coupled with mass spectroscopy (TGA-MS)

期刊

BIORESOURCE TECHNOLOGY
卷 393, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biortech.2023.130086

关键词

Co -gasification; Biomass; Oil shale; Synergetic effect

向作者/读者索取更多资源

Co-gasification of biomass with oil shale can reduce reliance on fossil fuels and enhance integration of renewable energy sources. The interaction between oil shale and biomass increases the concentrations of CO and CH4 in the producer gas. Pine bark exhibits the highest CO concentration and the blends of pine bark char have the lowest surface area among the tested samples.
Co-gasification of biomass with oil shale offers potential for integrating renewable and fossil energy sources, reducing reliance on fossil fuels. Biomass (pine and birch wood and bark) and oil shale blends (10-30 wt%) were gasified under CO2 conditions using thermogravimetric analysis coupled with mass spectrometry (TGA-MS), fixed-bed reactor, and gas chromatography. Results revealed an interaction between oil shale and biomass, enhancing CO and CH4 concentrations in the producer gas. Bark samples demonstrated higher CO concentrations compared to wood samples, particularly in pine, with 16.1 vol% and 5.4 vol%, respectively. While birch wood showed increased H2 evaporation in TGA-MS experiments, oil shale's impact on H2 concentration was inhibitive, as shown by quantitative analysis. Pine bark, with a threefold catalytic index compared to other biomass samples, demonstrated the highest total gas concentrations (19.2 vol%). Interestingly, pine bark char blends exhibited the lowest surface areas (up to 434 m2/g) among the tested samples.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据