4.7 Article

Integrated metabolomic and lipidomic analysis revealed the protective mechanisms of Erzhi Wan on senescent NRK cells through BRL cells

期刊

JOURNAL OF ETHNOPHARMACOLOGY
卷 320, 期 -, 页码 -

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.jep.2023.117482

关键词

Metabolomics; Lipidomics; Anti -Aging; Non -contact co -culture; Erzhi Wan

向作者/读者索取更多资源

This study evaluated the anti-aging effect of Erzhi Wan (EZW) and investigated the mechanisms associated with cellular metabolomics and lipidomics. The results showed that EZW exhibited a protective effect on D-gal-induced senescent kidney cells by mainly regulating amino acid metabolism, energy metabolism, and phospholipid biosynthesis pathways.
Ethnopharmacological relevance: Erzhi Wan (EZW), as a prescription of traditional Chinese medicine, has been used for tonifying the liver and kidney. Although past studies have shown that EZW has potential anti-aging effect, the mechanisms associated with cellular metabolomics and lipidomics are not fully understood. Aim of the study: This study aimed to evaluate the anti-aging effect of EZW and investigate the mechanisms associated with cellular metabolomics and lipidomics. Materials and methods: EZW solution at dosage of 3.6 g/kg in Sprague-Dawley rats was orally administered twice a day for 7 days and serum containing EZW was then collected. NRK cell senescence model induced by Dgalactose was established in vitro, and non-contact co-culture cell assay was performed between senescent NRK cells and BRL cells intervened by serum containing EZW. The anti-aging effect of EZW on NRK cells was evaluated by metabolites identification, differential metabolites screening and metabolic pathways analysis through cellular metabolomics with GC-MS and lipidomics with UHPLC-Q-Exactive Orbitrap/MS. Results: Serum containing EZW indicated a protective effect through intervening BRL cells in non-contact coculture system with D-gal-induced senescent NRK cells. For metabolic profiles, 71 endogenous metabolites were identified, among which 24 significantly differential metabolites were screened as metabolomics potential biomarkers. For lipidic profiles, 64 lipid components were identified in NRK cell samples under positive ion mode, among which 24 potential biomarkers of lipids were screened, mainly including PC and PE. 127 lipid components were identified in NRK cell samples under negative ion mode, among which 59 potential biomarkers of lipids were screened, including FA, PC, PE, PI and PS. Metabolic pathway analysis demonstrated that the identified differential metabolites found mainly involved in amino acids metabolism, energy metabolism and phospholipid biosynthesis pathways. Conclusion: Serum containing EZW exhibited protective effect on D-gal-induced senescent NRK cells through intervening BRL cells by mainly regulating amino acids metabolism, energy metabolism and phospholipid biosynthesis pathways to possess its anti-aging function, providing a theoretical basis for clinical treatment of EZW.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据