4.7 Article

Automatic detection and pixel-level quantification of surface microcracks in ceramics grinding: An exploration with Mask R-CNN and TransUNet

期刊

MEASUREMENT
卷 224, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.measurement.2023.113895

关键词

Ceramics grinding; Surface microcracks; Mask R-CNN; TransUNet; Crack quantification

向作者/读者索取更多资源

An automatic detection and pixel-level quantification model based on joint Mask R-CNN and TransUNet is developed to accurately evaluate microcrack damage on the grinding surfaces of engineering ceramics. The model is effectively trained on actual micrograph image dataset using a joint training strategy. The proposed model achieves reliable automatic detection and fine segmentation of microcracks, and a skeleton-based quantification model is also proposed to provide comprehensive and precise measurements of microcrack size.
Microcrack damage on the grinding surfaces of engineering ceramics is inevitably incurred. To accurately evaluate the microcrack damage, an automatic detection and pixel-level quantification model based on the joint Mask R-CNN and TransUNet is developed. In addition, a joint training strategy is employed and the model is trained effectively on the image dataset of microcrack damage derived from the Si3N4 grinding, as captured by SEM. The Mask R-CNN demonstrates reliable automatic detection of microcracks, achieving an Average Precision of AP50 = 0.989 and AP75 = 0.864. Meanwhile, the TransUNet achieves fine segmentation of microcracks with complex characteristics, with an F1 score of 0.914 and an IoU value of 0.785. A skeleton-based quantification model of microcrack size is proposed, which delivers comprehensive and precise measurements of area, length, and notably, the width. The proposed quantification model provides a technical reference for the automatic evaluation of grinding surface quality.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据