4.7 Article

Shape-memory polyurethane elastomer originated from waste PET plastic and their composites with carbon nanotube for sensitive and stretchable strain sensor

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesa.2023.107920

关键词

Recycling; Polyurethane; Carbon nanotubes; Composite

向作者/读者索取更多资源

This study successfully synthesized polyurethane elastomer by using degraded products from waste PET, and fabricated composites with carbon nanotubes for strain sensors. The composites showed good mechanical and durability performance, indicating a potential method for recycling waste PET into valuable and functional materials.
Chemical recycling of polyethylene terephthalate (PET) bottles is prospective for reducing waste plastics. The transformation of waste PET into valuable composites in high efficiency still remains a formidable challenge. Here we report the synthesis of polyurethane elastomer (PUE) by using the degraded products from waste PET via one-pot chain extended process. Then, the composites composed of PUE as substrate with carbon nanotubes as fillers are applied in fabricating stretchable strain sensor. The results show that the degraded product was successfully introduced into the polyurethane chains. The PUE chains showed disordered stacking as the degraded product content increased, with the modulus and elongation at break were up to 763.9 %. The composites assembled strain sensors exhibited stable sensing performance and excellent durability after 1000 cycles at 20 % tensile strain. This may supply a path to efficiently recycle waste PET plastic into valuable and functional composites, and even devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据