4.7 Article

Dynamic characteristics of spur gear system with tooth root crack considering gearbox flexibility

期刊

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ymssp.2023.110966

关键词

Tooth root crack; Simplified crack path; Spur gear system; Gearbox flexibility; Experimental result

向作者/读者索取更多资源

Considering the calculation efficiency and accuracy of meshing characteristics of gear pair with tooth root crack fault, a parametric model of cracked spur gear is established by simplifying the crack propagation path. The LTCA method is used to calculate the time-varying meshing stiffness and transmission error, and the results are verified by finite element method. The study also proposes a crack area share index to measure the degree of crack fault and determines the application range of simplified crack propagation path.
Considering the calculation efficiency and accuracy of meshing characteristics of gear pair with tooth root crack fault, the parametric model of cracked spur gear is established by simplifying the crack propagation path. LTCA method is used to calculate the time-varying meshing stiffness (TVMS) and transmission error (TE) of the cracked gear pair, and is verified by finite element (FE) method. The crack area share index is proposed to measure the degree of crack fault and the application range of simplified crack propagation path is obtained. The gearbox is introduced into the calculation as the condensation model, and the dynamic model of gear system with root crack fault considering gearbox flexibility is established. The effects of gearbox flexibility, rotational speed, crack degree and gear torque on the vibration response fault characteristics of gear system are analyzed. Compared with the simulation results without considering gearbox flexibility, the simulation results considering gearbox flexibility are smaller in amplitude and closer to the experimental results. The fault shock degree in acceleration waveform and fault frequency modulation in FFT spectrum are more obvious considering gearbox flexibility. The fault characteristics of vibration response are more obviously affected by the reduction of gearbox flexibility and the increase of fault degree than the change of rotational speed and gear torque. The research results provide theoretical and technical support for fault diagnosis and health monitoring of gear systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据