4.7 Article

Investigation on strength and deformation properties of lateritic clay

期刊

CONSTRUCTION AND BUILDING MATERIALS
卷 411, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.conbuildmat.2023.134276

关键词

Lateritic clay; Deformation; Strength; Prediction; Water retention behavior

向作者/读者索取更多资源

This study determined the boundary line between the swelling and compression deformation zone in lateritic clay through wetting tests, and proposed a simple bimodal SWRC model. It also found that the existing strength model underestimated the tested values in the medium to high suction range, therefore a segmented strength equation was introduced for enhanced predictions of the strength properties of lateritic clay.
Lateritic clay is often used as a construction material for roads in tropical and subtropical areas. However, these materials exhibit high compressibility, high rate of creep, and susceptibility to severe cracking due to swelling and shrinkage behavior. These traits are closely linked to its hydro-mechanical and deformation properties. In this study, firstly, a boundary line between the swelling and compression deformation zone was determined based on the results of wetting tests. This boundary line is crucial for identifying the specific deformation mechanisms observed in unsaturated lateritic clays under varying water conditions. Secondly, an analysis of the relationship between pore size distribution and the soil water retention curve (SWRC) were conducted. A simple bimodal SWRC model, using the normal distribution function, was proposed. Additionally, the strength characteristics of lateritic clay were investigated over a wide suction range. It was observed that the existing strength model significantly underestimated the tested values in the medium to high suction range. To address this, a segmented strength equation was introduced based on unsaturated effective stress analysis. This approach allows enables enhanced predictions of the strength properties of lateritic clay. Altogether, these findings have greatly contributed to a better understanding of the engineering properties of lateritic clay.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据