4.7 Article

Design and preparation of ternary polymer nanocomposites for high energy density film capacitors

期刊

COMPOSITES SCIENCE AND TECHNOLOGY
卷 245, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compscitech.2023.110361

关键词

Discharge energy density; Breakdown strength; Ternary polymer nanocomposite; Nano alumina; Barium titanate nanowires

向作者/读者索取更多资源

This research aims to develop ternary nanocomposites composed of polycarbonate, Al2O3 nanoparticles, and BaTiO3 nanowires for capacitive energy-storage. By optimizing the capacitor materials, the discharge energy density and efficiency have been improved, and the superiority of the ternary polymer nanocomposites for dielectric energy-storage has been validated through finite element analysis.
High discharge energy density (Ue) film capacitors are important for miniaturization and integration in power electronic applications. The Ue of a polymer film is mainly dependent on Weibull's breakdown strength (Eb) and dielectric constant (epsilon r). This work aims to develop ternary nanocomposites composed of polycarbonate (PC), Al2O3 nanoparticles (Al2O3 NPs) and BaTiO3 nanowires (BT NWs) for capacitive energy-storage. Al2O3 NPs have a wide bandgap and are expected to enhance Eb owing to their insulating nature, while BaTiO3 nanowires (BT NWs) are ferroelectric and are expected to provide a high epsilon r. To overcome local electric-field distortion at the interface due to the mismatch in epsilon r, core-shell structured BT@SiO2 NWs are prepared. The Eb of the composite containing 1.0 wt% Al2O3 NPs and 6.0 wt% BT@SiO2 NWs can reach 626 MV/m while that of the pure PC is 465 MV/m. As a result, its Ue reaches 12.12 J/cm3, which is improved by 211% that of the pure PC. Its discharge efficiency is 83.5%. A finite element analysis corroborates the superiority of the ternary polymer nanocomposites for dielectric energy-storage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据