4.7 Article

Structural rearrangement of elastin under oxidative stress

期刊

出版社

ELSEVIER
DOI: 10.1016/j.colsurfb.2023.113663

关键词

Reactive Oxygen Species (ROS); Elastin; Hydrodynamic radius; Dityrosine

向作者/读者索取更多资源

This in-vitro study evaluates the effect of reactive oxygen species (ROS) on the structural rearrangement of elastin. The results show that oxidative stress leads to a decrease in protein size and changes in secondary structure, potentially promoting protein aggregation. This study is important for therapeutics aiming to prevent elastin degradation and aging.
Reactive oxygen species (ROS) are key elements in several physiological processes. A high level of ROS leads to oxidative stress that damages biomolecules and is linked to many diseases like type-2 diabetes, cancer, inflammation, and many more. Here, our in-vitro study aimed to gauge the effect of ROS on the structural rearrangement of elastin through metal-catalyzed oxidation (MCO) at physiological temperature through laser light scattering, UV-vis, FTIR, and FESEM imaging. Light scattering data show a decrease in the hydrodynamic radius of elastin upon oxidation for the first hour. The rate of size reduction of ROS-treated elastin and the rate for self-assembly of bare elastin in the first two hours is found to be almost the same. However, the rate of association of ROS-treated is one order slower than the bare elastin after one hour. UV-vis absorption shows a blue shift accompanied by increased absorption, followed by a redshift and broadening of peak. FTIR data reveal changes in the secondary structures for both bare and oxidized elastin with time. While bare elastin coacervation increases unordered structure, the corresponding case of oxidized elastin saw a rise in beta-sheet. FESEM images show the morphological changes occurring with time. Thus, we conclude that oxidative stress leads to structural rearrangement of the protein through interaction with the polar and hydrophobic domains, followed by aggregation. This study might be helpful for therapeutics focusing on preventing elastin degradation against aging.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据