4.7 Article

A neural network-based enrichment of reproducing kernel approximation for modeling brittle fracture

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cma.2023.116590

关键词

Neural network; enrichment; reproducing kernel; fracture; damage

向作者/读者索取更多资源

This paper introduces an improved neural network-enhanced reproducing kernel particle method for modeling the localization of brittle fractures. By adding a neural network approximation to the background reproducing kernel approximation, the method allows for the automatic location and insertion of discontinuities in the function space, enhancing the modeling effectiveness. The proposed method uses an energy-based loss function for optimization and regularizes the approximation results through constraints on the spatial gradient of the parametric coordinates, ensuring convergence.
Numerical modeling of localizations is a challenging task due to the evolving rough solution in which the localization paths are not predefined. Despite decades of efforts, there is a need for innovative discretization-independent computational methods to predict the evolution of localizations. In this work, an improved version of the neural network-enhanced Reproducing Kernel Particle Method (NN-RKPM) is proposed for modeling brittle fracture. In the proposed method, a background reproducing kernel (RK) approximation defined on a coarse and uniform discretization is enriched by a neural network (NN) approximation under a Partition of Unity framework. In the NN approximation, the deep neural network automatically locates and inserts regularized discontinuities in the function space. The NN-based enrichment functions are then patched together with RK approximation functions using RK as a Partition of Unity patching function. The optimum NN parameters defining the location, orientation, and displacement distribution across location together with RK approximation coefficients are obtained via the energybased loss function minimization. To regularize the NN-RK approximation, a constraint on the spatial gradient of the parametric coordinates is imposed in the loss function. Analysis of the convergence properties shows that the solution convergence of the proposed method is guaranteed. The NN enrichment allows the modeling of evolving cracks by a fixed coarse RK discretization without adaptive refinement for enhanced computational efficiency. The effectiveness of the proposed method is demonstrated by a series of numerical examples involving damage propagation and branching.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据