4.7 Article

Discovering a reaction-diffusion model for Alzheimer's disease by combining PINNs with symbolic regression

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cma.2023.116647

关键词

Alzheimer's disease; Misfolded tau protein; Model discovery; Uncertainty quantification; PINNs; Symbolic regression

向作者/读者索取更多资源

In this study, deep learning and artificial intelligence were used to discover a mathematical model for the progression of Alzheimer's disease. By analyzing longitudinal tau positron emission tomography data, a reaction-diffusion type partial differential equation for tau protein misfolding and spreading was discovered. The results showed different misfolding models for Alzheimer's and healthy control groups, indicating faster misfolding in Alzheimer's group. The study provides a foundation for early diagnosis and treatment of Alzheimer's disease and other misfolding-protein based neurodegenerative disorders using image-based technologies.
Misfolded tau proteins play a critical role in the progression and pathology of Alzheimer's disease. Recent studies suggest that the spatio-temporal pattern of misfolded tau follows a reaction-diffusion type equation. However, the precise mathematical model and parameters that characterize the progression of misfolded protein across the brain remain incompletely understood. Here, we use deep learning and artificial intelligence to discover a mathematical model for the progression of Alzheimer's disease using longitudinal tau positron emission tomography from the Alzheimer's Disease Neuroimaging Initiative database. Specifically, we integrate physics informed neural networks (PINNs) and symbolic regression to discover a reaction-diffusion type partial differential equation for tau protein misfolding and spreading. First, we demonstrate the potential of our model and parameter discovery on synthetic data. Then, we apply our method to discover the best model and parameters to explain tau imaging data from 46 individuals who are likely to develop Alzheimer's disease and 30 healthy controls. Our symbolic regression discovers different misfolding models 1(c) for two groups, with a faster misfolding for the Alzheimer's group, 1(c) = 0.23c3 - 1.34c2 + 1.11c, than for the healthy control group, 1(c) = -c3 + 0.62c2 + 0.39c. Our results suggest that PINNs, supplemented by symbolic regression, can discover a reaction-diffusion type model to explain misfolded tau protein concentrations in Alzheimer's disease. We expect our study to be the starting point for a more holistic analysis to provide image-based technologies for early diagnosis, and ideally early treatment of neurodegeneration in Alzheimer's disease and possibly other misfolding-protein based neurodegenerative disorders.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据