4.7 Article

Probabilistic physics-guided transfer learning for material property prediction in extrusion deposition additive manufacturing

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cma.2023.116660

关键词

Transfer learning; Heat transfer; Fiber orientation; Short fiber composites; Gaussian process surrogate; Extrusion deposition additive manufacturing

向作者/读者索取更多资源

We propose a physics-guided transfer learning approach to predict the thermal conductivity of additively manufactured short-fiber reinforced polymers using micro-structural characteristics obtained from tensile tests. A Bayesian framework is developed to transfer the thermal conductivity properties across different extrusion deposition additive manufacturing systems. The experimental results demonstrate the effectiveness and reliability of our method in accounting for epistemic and aleatory uncertainties.
We introduce the concept of physics-guided transfer learning to predict the thermal conductivity of an additively manufactured short-fiber reinforced polymer (SFRP) using micro-structural characteristics extracted from tensile tests. Developing composite manufacturing digital twins for SFRP composite processes like extrusion deposition additive manufacturing (EDAM) require extensive experimental material characterization. Even the same material system printed on different EDAM systems can result in significant changes to the printed micro-structure, affecting the mechanical and transport properties. This, in turn, makes characterization efforts expensive and time-consuming. Therefore, the objective of the paper is to address this experimental bottleneck and use prior information about the material manufactured in one extrusion system to predict its properties when manufactured in another system. To enable this framework, we assume that changes in properties of the same material when manufactured in different systems arise solely due to microstructural changes. To that end, we present a Bayesian framework that can transfer thermal conductivity properties across extrusion deposition additive manufacturing systems. While we discuss the transfer of thermal conductivity properties, the development is such that the framework can be used for the transfer of other properties that depend on microstructural characteristics defined in the manufacturing process. These include the coefficient of thermal expansion, viscoelastic properties, etc. The framework begins by using thermal conductivity data of the composite printed in one extrusion system to probabilistically infer the constituent thermal properties of the fiber and the polymer. Next, by conducting limited tensile tests of the same material printed in another extrusion system, we infer its orientation tensor. Finally, the inferred constituent thermal conductivity properties and the inferred orientation tensor are coupled using a micromechanics model to predict the thermal conductivity properties of the composite printed in the second extrusion system. We experimentally verify the predictions and show that our method provides a reliable framework for transferring material properties while accounting for epistemic and aleatory uncertainties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据