4.5 Article

Engraulisin: A novel marine derived cell penetrating peptide with activity against drug resistant bacteria

期刊

出版社

ELSEVIER
DOI: 10.1016/j.bbamem.2023.184255

关键词

Cell penetrating peptide; Drug delivery; Methicillin-resistant Staphylococcus aureus; Marine; Cargo; Minimal inhibitory concentration

向作者/读者索取更多资源

Cell penetrating peptides (CPP) are important tools for intracellular delivery of molecules. In this study, a novel marine-derived CPP from Engraulis japonicus, called Engraulisin, was reported. Engraulisin demonstrated successful cellular uptake and selective antimicrobial activity against Methicillin-resistant Staphylococcus aureus (MRSA), making it a potential candidate for drug delivery.
Cell penetrating peptides (CPP) with their intrinsic ability to penetrate plasma membranes facilitate intracellular uptake of various macromolecules. Although a substantial number of CPPs have been reported over the last three decades, the number is still inadequate when compared to the theoretically feasible peptides with similar physicochemical composition.Marine organisms, due to their hostile environment, are an immense source of several high-valued therapeutically relevant peptides. Various marine derived antibacterial, antimycotic and anticancer peptides have demonstrated improved activity in comparison to peptides of terrestrial origin. While a significant number of marine bioactive peptides exist, cell penetrating peptides from marine organisms remain unravelled.In this study, we report Engraulisin from Engraulis japonicus, a computationally derived novel cell penetrating peptide of marine origin. Engraulisin manifest successful uptake in mammalian cells at 5 mu M concentration with negligible cytotoxicity observed through MTT assay. Analysis of its cellular uptake mechanism revealed significant inhibition at 4 degrees C suggesting endocytosis as the major route of cellular entry. Interestingly, the novel peptide also demonstrated selective antimicrobial activity against Methicillin-resistant Staphylococcus aureus (MRSA). Additionally, molecular dynamics simulation with POPC and POPG bilayer system unveiled significance of positively charged residues in forming a stable membrane interaction. Engraulisin represents a novel marinederived cell penetrating peptide which can be explored for cellular delivery of pharmaceutically relevant molecules.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据