4.7 Article

DeepPHiC: predicting promoter-centered chromatin interactions using a novel deep learning approach

向作者/读者索取更多资源

The researchers developed a supervised multi-modal deep learning model to predict tissue/cell type-specific promoter-enhancer (PE) and promoter-promoter (PP) interactions. The model utilized a comprehensive set of features, including genomic sequence, epigenetic signal, anchor distance, evolutionary features, and DNA structural features. The proposed approach outperformed state-of-the-art deep learning methods, especially in predicting PE interactions. The performance could be further improved by using computationally inferred biologically relevant tissues/cell types in the pretraining.
Motivation: Promoter-centered chromatin interactions, which include promoter-enhancer (PE) and promoter-promoter (PP) interactions, are important to decipher gene regulation and disease mechanisms. The development of next-generation sequencing technologies such as promoter capture Hi-C (pcHi-C) leads to the discovery of promoter-centered chromatin interactions. However, pcHi-C experiments are expensive and thus may be unavailable for tissues/cell types of interest. In addition, these experiments may be underpowered due to insufficient sequencing depth or various artifacts, which results in a limited finding of interactions. Most existing computational methods for predicting chromatin interactions are based on in situ Hi-C and can detect chromatin interactions across the entire genome. However, they may not be optimal for predicting promoter-centered chromatin interactions.Results: We develop a supervised multi-modal deep learning model, which utilizes a comprehensive set of features such as genomic sequence, epigenetic signal, anchor distance, evolutionary features and DNA structural features to predict tissue/cell type-specific PE and PP interactions. We further extend the deep learning model in a multi-task learning and a transfer learning framework and demonstrate that the proposed approach outperforms state-of-the-art deep learning methods. Moreover, the proposed approach can achieve comparable prediction performance using predefined biologically relevant tissues/cell types compared to using all tissues/cell types in the pretraining especially for predicting PE interactions. The prediction performance can be further improved by using computationally inferred biologically relevant tissues/cell types in the pretraining, which are defined based on the common genes in the proximity of two anchors in the chromatin interactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据