4.8 Article

Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data

期刊

NATURE MACHINE INTELLIGENCE
卷 -, 期 -, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s42256-022-00584-3

关键词

-

向作者/读者索取更多资源

Reconstructing holographic images is difficult due to the ill posed inverse mapping problem. However, Lee and colleagues propose a deep learning method that incorporates a physical model and can handle physical perturbations in holographic image reconstruction, making it more reliable and applicable to a wider range of imaging problems.
The reconstruction of spatially resolved information of an extended object from an observed intensity diffraction pattern in holographic imaging is a challenging problem. By incorporating an explicit physical model, Lee and colleagues propose a deep learning method that can be used in holographic image reconstruction under physical perturbations and which generalizes well beyond object-to-sensor distances and pixel sizes seen during training. Holographic imaging poses the ill posed inverse mapping problem of retrieving complex amplitude maps from measured diffraction intensity patterns. The existing deep learning methods for holographic imaging often depend solely on the statistical relation between the given data distributions, compromising their reliability in practical imaging configurations where physical perturbations exist in various forms, such as mechanical movement and optical fluctuation. Here, we present a deep learning method based on a parameterized physical forward model that reconstructs both the complex amplitude and the range of objects under highly perturbative configurations where the object-to-sensor distance is set beyond the range of given training data. To prove reliability in practical biomedical applications, we demonstrate holographic imaging of red blood cells flowing in a cluster and diverse types of tissue section presented without any ground truth data. Our results suggest that the proposed approach permits the adaptability of deep learning methods to deterministic perturbations, and therefore extends their applicability to a wide range of inverse problems in imaging.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据