4.7 Article

Polarization-Entangled Photon Pairs from Warm Atomic Ensemble with Magnetic Background Noise

期刊

ADVANCED QUANTUM TECHNOLOGIES
卷 6, 期 3, 页码 -

出版社

WILEY
DOI: 10.1002/qute.202200118

关键词

collective two-photon coherence; polarization-entangled photons; quantization axis; warm atomic ensemble

向作者/读者索取更多资源

It is demonstrated that the polarization-entangled photon-pair sources from atomic ensembles can be controlled using an external magnetic field, thereby optimizing the entangled state.
Atomic ensembles are important quantum resources for the generation, manipulation, and quantum memory of entangled photons. In photonic quantum information based on atom-photon interactions, high-quality entangled-photon-pair sources are essential for realizing quantum information networks consisting of channels to connect the nodes through atomic ensembles. Here, a proof-of-concept for controlling polarization-entangled photon-pair sources from atomic ensembles by an external magnetic field under a magnetic noise environment is demonstrated. In the unshielded magnetic field, the polarization entangled state of the photon pair could be optimized to the target state by adjusting the magnetic field in an atomic vapor cell. The polarization-interference fringe, Bell's inequality value, quantum state tomography, and Hong-Ou-Mandel interference of the polarization entangled photon pairs from the cascade-type 5S(1/2)-5P(3/2)-5D(5/2) transition of Rb-87 according to the direction of the external magnetic field. Accordingly, a magnetic field is found to be a promising means for controlling entangled two-qubit states based on atom-photon.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据