4.6 Article

Magnetic-monopole-induced polarons in atomic superlattices

期刊

PHYSICAL REVIEW A
卷 107, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.107.013312

关键词

-

向作者/读者索取更多资源

Magnetic monopoles have been observed as quasiparticles in condensed matter and ultracold atomic systems. This study explores the interaction between monopoles and magnons in an atomic pseudospin chain. The monopole excites a virtual magnon cloud in the chain, resulting in a unique type of polaron known as the monopole-cored polaron (MCP). The magnon dressing affects the monopole hopping and leads to an antitrapping effect, enhancing the mobility of the MCP.
Magnetic monopoles have been realized as emergent quasiparticles in both condensed matter and ultracold atomic platforms, with growing interest in the coupling effects between the monopole and different magnetic quasiparticles. In this work, interaction effects between monopoles and magnons are investigated for an atomic pseudospin chain. We reveal that the monopole can excite a virtual magnon cloud in the paramagnetic chain, thereby giving rise to an unconventional type of polaron, the monopole-cored polaron (MCP). The MCP is composed of the monopole as the impurity core and the virtual magnon excitation as the dressing cloud. The magnon dressing facilitates the Dirac string excitation and impacts the monopole hopping. This induces an antitrapping effect of the MCP, which refers to the fact that the dressing enhances the mobility of the MCP, in contrast to the self-trapping of the common polarons. Moreover, heterogeneous bipolarons are shown to exist under the simultaneous doping of a north and a south monopole. The heterogeneous bipolaron possesses an inner degree of freedom composed of two identical impurities. Our investigation sheds light on the understanding of how the coupling between the impurity core and the dressing cloud can engineer the property of the polaron.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据