4.6 Article

Analysis of multipartite entanglement distribution using a central quantum-network node

期刊

PHYSICAL REVIEW A
卷 107, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.107.012609

关键词

-

向作者/读者索取更多资源

We study the performance of distributing multipartite entangled states in a quantum network through a central node. We provide analytical expressions and lower bounds for the rate and fidelity of distributing Greenberger-Horne-Zeilinger (GHZ) states through quantum teleportation. We also compare the performance to a distributed scenario where the GHZ state is created by the end nodes.
We study the performance (rate and fidelity) of distributing multipartite entangled states ina quantum network through the use of a central node. Specifically, we consider the scenario where the multipartite entangled state is first prepared locally at a central node and then transmitted to the end nodes of the network through quantum teleportation. As our first result, we present leading-order analytical expressions and lower bounds for both the rate and fidelity at which a specific class of multipartite entangled states, namely, Greenberger-Horne-Zeilinger (GHZ) states, are distributed. Our analytical expressions for the fidelity accurately account for time-dependent depolarizing noise encountered by individual quantum bits while stored in quantum memory, as verified using Monte Carlo simulations. As our second result, we compare the performance to the case where the central node is an entanglement switch and the GHZ state is created by the end nodes in a distributed fashion. Apart from these two results, we outline how the teleportation-based scheme could be physically implemented using trapped ions or nitrogen-vacancy centers in diamond.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据