4.2 Article

Dimension reduction of noisy interacting systems

期刊

PHYSICAL REVIEW RESEARCH
卷 5, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevResearch.5.013078

关键词

-

向作者/读者索取更多资源

This article presents a model describing a group of identical interacting agents subject to multiplicative noise. These systems exhibit continuous and discontinuous phase transitions in a generally nonequilibrium setting. The authors provide a systematic dimension reduction methodology for constructing low-dimensional, reduced-order dynamics based on the cumulants of the probability distribution of the infinite system. They show that this approach accurately represents the system's stationary phase diagram and captures its response to external perturbations.
We consider a class of models describing an ensemble of identical interacting agents subject to multiplicative noise. In the thermodynamic limit, these systems exhibit continuous and discontinuous phase transitions in a, generally, nonequilibrium setting. We provide a systematic dimension reduction methodology for constructing low-dimensional, reduced-order dynamics based on the cumulants of the probability distribution of the infinite system. We show that the low-dimensional dynamics returns the correct diagnostic properties since it produces a quantitatively accurate representation of the stationary phase diagram of the system that we compare with exact analytical results and numerical simulations. Moreover, we prove that the reduced order dynamics yields also the prognostic, i.e., time-dependent properties, as it provides the correct response of the system to external perturbations. On the one hand, this validates the use of our complexity reduction methodology since it retains information not only of the invariant measure of the system but also of the transition probabilities and time-dependent correlation properties of the stochastic dynamics. On the other hand, the breakdown of linear response properties is a key signature of the occurence of a phase transition. We show that the reduced response operators capture the correct diverging resonant behavior by quantitatively assessing the singular nature of the susceptibility of the system and the appearance of a pole for real values of frequencies. Hence, this methodology can be interpreted as a low-dimensional, reduced order approach to the investigation and detection of critical phenomena in high-dimensional interacting systems in settings where order parameters are not known.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据